skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Strong, Donald R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Susan Lynn Williams (1951–2018) was an exceptional marine ecologist whose research focused broadly on the ecology of benthic nearshore environments dominated by seagrasses, seaweeds, and coral reefs. She took an empirical approach founded in techniques of physiological ecology. Susan was committed to applying her research results to ocean management through outreach to decision-makers and resource managers. Susan’s career included research throughout the USA in tropical, temperate, and polar regions, but she specialized in tropical marine ecology. Susan’s scholarship, leadership, and friendship touched many people, leading to this multi-authored paper. Susan’s scholarship was multi-faceted, and she excelled in scientific discovery, integration of scientific results, application of science for conservation, and teaching, especially as a mentor to undergraduate and graduate students and postdoctoral scholars. Susan served in a variety of leadership positions throughout her career. She embodied all facets of leadership; leading by example, listening to others, committing to the “long haul,” maintaining trust, and creating a platform for all to shine. Susan was an important role model for women in science. Susan was also a loyal friend, maintaining friendships for many decades. Susan loved cooking and entertaining with friends. This paper provides an overview of the accomplishments of Susan in the broad categories of scholarship, leadership, and friendship. 
    more » « less
  2. Summary Biological invasions offer model systems of contemporary evolution. We examined trait differences and evolution across geographic clines among continents of the intertidal grassSpartina alterniflorawithin its invasive and native ranges.We sampled vegetative and reproductive traits in the field at 20 sites over 20° latitude in China (invasive range) and 28 sites over 17° in the US (native range). We grew both Chinese and US plants in a glasshouse common garden for 3 yr.Chinese plants werec. 15% taller,c. 10% denser, and set up to four times more seed than US plants in both the field and common garden. The common garden experiments showed a striking genetic cline of seven‐fold greater seed set at higher latitudes in the introduced but not the native range. By contrast, there was a slight genetic cline in some vegetative traits in the native but not the introduced range.Our results are consistent with others showing that introduced plants can evolve rapidly in the new range.S. alterniflorahas evolved different trait clines in the native and introduced ranges, showing the importance of phenotypic plasticity and genetic control of change during the invasion process. 
    more » « less
  3. Abstract Introduced plants provide a unique opportunity to examine how plants respond through plasticity and adaptation to changing climates. We compared plants ofSpartina alterniflorafrom the native (United States, 27–43°N) and introduced (China, 19–40°N) ranges. In the field and greenhouse, aboveground productivity of Chinese plants was greater than that of North American plants. Aboveground biomass in the field declined with increasing latitude in the native range, a pattern that persisted in the greenhouse, indicating a genetic basis. Aboveground biomass in the field displayed hump‐shaped relationships with latitude in China, but this pattern disappeared in field and greenhouse common gardens, indicating phenotypic plasticity. Relationships in both geographic regions were explained by temperature, which is probably the underlying environmental factor affecting aboveground biomass.S. alterniflorahas evolved greater biomass in China, but in the four decades since it was introduced, it has not yet evolved the genetic cline in biomass seen in its native range. By working at lower latitudes in the introduced range than have been sampled in the native range, we identified an optimum temperature in the introduced range above which aboveground productivity decreases. 
    more » « less